English: aircraft fuel pump test bench, aircraft engine fuel controller tester, aviation fuel system calibration rig, aerospace hydraulic test stand, integrated fuel control testing machine, aircraft fuel pump calibration equipment, aviation fuel system test equipment, aerospace component preservation system, engine fuel control test rig, aircraft fuel system maintenance bench, aircraft hydraulic and pneumatic test bench, aerospace fuel system simulation rig, fuel metering unit test stand, aircraft fuel control valve tester, aircraft engine accessory test stand, aviation hydraulic calibration equipment, aerospace fuel pump testing machine, integrated fuel pump and controller test system, aircraft fuel flow regulator test bench, engine fuel pump preservation rig German (Deutsch): Prüfstand für Flugzeugkraftstoffpumpe, Prüfgerät für Flugtriebwerkskraftstoffregler, Kalibrieranlage für Luftfahrt-Kraftstoffsysteme, Hydraulikprüfstand Luftfahrt, Teststand für integrierte Kraftstoffregelung, Kalibriergerät für Flugkraftstoffpumpe, Prüfgerät für Flugkraftstoffsysteme, Konservierungssystem für Luftfahrtkomponenten, Prüfstand für Kraftstoffregelung, Wartungsprüfstand Flugkraftstoffsystem, Hydraulik- und Pneumatikprüfstand Luftfahrt, Simulationsanlage für Flugkraftstoffsysteme, Teststand für Kraftstoffdosiergerät, Prüfgerät für Kraftstoffregelventile, Teststand für Triebwerkszubehör, Hydraulische Kalibrieranlage Luftfahrt, Prüfgerät für Luftfahrt-Kraftstoffpumpen, Testsystem für integrierte Kraftstoffregelung, Prüfstand für Kraftstoffdurchflussregler, Konservierungsanlage für Kraftstoffpumpen French (Français): banc d’essai pompe à carburant avion, testeur régulateur carburant moteur avion, banc de calibration système carburant aéronautique, banc hydraulique aéronautique, banc d’essai commande carburant intégrée, équipement de calibration pompe à carburant avion, banc d’essai système carburant aéronautique, système de préservation composants aéronautiques, banc test régulation carburant, banc maintenance système carburant avion, banc hydraulique et pneumatique aéronautique, simulateur système carburant aéronautique, banc test unité dosage carburant, testeur vanne régulation carburant, banc d’essai accessoire moteur avion, équipement de calibration hydraulique aéronautique, machine test pompe carburant aéronautique, système test pompe et régulateur carburant intégrés, banc test régulateur débit carburant, banc préservation pompe carburant Italian (Italiano): banco prova pompa carburante aereo, tester regolatore carburante motore aeronautico, banco taratura sistema carburante aerospaziale, banco prova idraulico aeronautico, banco prova regolazione carburante integrata, apparecchiatura taratura pompa carburante aereo, banco prova sistema carburante aviazione, sistema conservazione componenti aerospaziali, banco prova regolatore carburante, banco manutenzione sistema carburante aereo, banco prova idraulico e pneumatico aviazione, simulatore sistema carburante aerospaziale, banco prova unità dosatrice carburante, tester valvola regolazione carburante, banco prova accessori motore aereo, apparecchiatura taratura idraulica aeronautica, macchina prova pompa carburante aeronautica, sistema test pompa e regolatore carburante integrati, banco prova regolatore flusso carburante, banco conservazione pompa carburante Spanish (Español): banco de pruebas bomba de combustible aeronave, probador regulador combustible motor aeronáutico, banco calibración sistema combustible aeronáutico, banco hidráulico aeronáutico, banco pruebas control combustible integrado, equipo calibración bomba combustible avión, banco pruebas sistema combustible aviación, sistema preservación componentes aeronáuticos, banco pruebas regulación combustible, banco mantenimiento sistema combustible aeronave, banco hidráulico y neumático aviación, simulador sistema combustible aeronáutico, banco pruebas unidad dosificadora combustible, probador válvula control combustible, banco pruebas accesorios motor aeronave, equipo calibración hidráulica aeronáutica, máquina prueba bomba combustible aeronáutica, sistema prueba bomba y regulador combustible integrados, banco pruebas regulador flujo combustible, banco preservación bomba combustible Russian (Русский): стенд испытания топливного насоса самолета, тестер регулятора топлива авиационного двигателя, стенд калибровки топливной системы авиации, гидравлический испытательный стенд авиации, стенд для интегрированной топливной системы, оборудование калибровки топливного насоса самолета, испытательный стенд топливной системы авиации, система консервации авиационных компонентов, стенд испытания регулятора топлива, стенд обслуживания топливной системы самолета, гидравлический и пневматический стенд авиации, симулятор топливной системы авиации, стенд испытания дозатора топлива, тестер клапана регулирования топлива, стенд испытания аксессуаров двигателя самолета, оборудование гидравлической калибровки авиации, машина для испытания топливного насоса авиации, система испытания интегрированного насоса и регулятора топлива, стенд испытания регулятора расхода топлива, стенд консервации топливного насоса Portuguese (Português): banco de teste bomba de combustível aeronave, testador regulador combustível motor aeronáutico, banco calibração sistema combustível aeronáutico, banco hidráulico aeronáutico, banco teste controle combustível integrado, equipamento calibração bomba combustível avião, banco teste sistema combustível aviação, sistema preservação componentes aeronáuticos, banco teste regulador combustível, banco manutenção sistema combustível aeronave, banco hidráulico e pneumático aviação, simulador sistema combustível aeronáutico, banco teste unidade dosadora combustível, testador válvula controle combustível, banco teste acessórios motor aeronave, equipamento calibração hidráulica aeronáutica, máquina teste bomba combustível aeronáutica, sistema teste bomba e regulador combustível integrados, banco teste regulador fluxo combustível, banco preservação bomba combustível Chinese (Simplified / 中文): 飞机燃油泵测试台, 飞机发动机燃油调节器测试设备, 航空燃油系统校准台, 航空液压测试台, 集成燃油控制测试设备, 飞机燃油泵校准设备, 航空燃油系统测试设备, 航空部件保护系统, 燃 油控制测试台, 飞机燃油系统维护平台, 航空液压气动测试台, 航空燃油系统模拟装置, 燃油计 量单元测试台, 燃油调节阀测试设备, 发动机附件测试台, 航空液压校准设备, 航空燃油泵测试 机, 集成燃油泵与控制器测试系统, 燃油流量调节器测试台, 燃油泵保护测试台 Japanese (日本語): 航空機燃料ポンプ試験台, 航空エンジン燃料コントローラ試験装置, 航空燃料システム校正 台, 航空用油圧試験台, 統合燃料制御試験機, 航空機燃料ポンプ校正装置, 航空燃料システム 試験装置, 航空部品保存システム, 燃料制御試験台, 航空機燃料システム保守台, 航空油圧・ 空圧試験台, 航空燃料システムシミュレーター, 燃料計量ユニット試験台, 燃料制御バルブ試 験機, 航空エンジン補機試験台, 航空油圧校正装置, 航空燃料ポンプ試験機, 統合燃料ポンプ およびコントローラ試験システム, 燃料流量調整器試験台, 燃料ポンプ保存試験台 Korean (한국어): 항공기 연료 펌프 시험대, 항공 엔진 연료 제어기 시험 장비, 항공 연료 시스템 교정대, 항공 유압 시험대, 통합 연료 제어 시험기, 항공기 연료 펌프 교정 장비, 항공 연료 시스템 시험 장비, 항공 부품 보존 시스템, 연료 제어 시험대, 항공기 연료 시스템 유지보수대, 항공 유압 및 공압 시험대, 항공 연료 시스템 시뮬레이터, 연료 계량 장치 시험대, 연료 조절 밸브 시험기, 항공 엔진 부속품 시험대, 항공 유압 교정 장비, 항공 연료 펌프 시험기, 통합 연료 펌프 및 제어기 시험 시스템, 연료 유량 조절기 시험대, 연료 펌프 보존 시험대 :(العربية) Arabic منصة اختبار مضخة وقود الطائرات ,جهاز اختبار منظم وقود محرك الطائرة ,منصة معايرة نظام وقود الطيران ,منصة اختبار هيدروليكية للطيران ,جهاز اختبار التحكم المتكامل بالوقود ,جهاز معايرة مضخة وقود الطائرات ,معدات اختبار نظام وقود الطيران ,نظام حفظ مكونات الطيران ,منصة اختبار التحكم بالوقود ,منصة صيانة نظام وقود الطائرات ,منصة اختبار هيدروليكية وهوائية للطيران ,جهاز محاكاة نظام وقود الطيران ,منصة اختبار وحدة قياس الوقود ,جهاز اختبار صمام تنظيم الوقود ,منصة اختبار ملحقات محرك الطائرة ,معدات معايرة هيدروليكية للطيران ,آلة اختبار مضخة وقود الطائرات ,نظام اختبار مضخة الوقود والمنظم المتكامل ,منصة اختبار منظم تدفق الوقود ,منصة حفظ مضخة الوقود

Advanced Test & Calibration Bench for Integrated Fuel Pump and Controller in Aircraft Engines

About

The Advanced Test & Calibration Bench for Integrated Fuel Pump and Controller in Aircraft Engines is a precision-engineered facility designed to simulate and validate real-world operating conditions of critical aircraft fuel systems. It combines high-accuracy hydraulic delivery, pneumatic simulation, and electrical drive control to replicate engine environments with exceptional fidelity. The bench enables detailed performance verification, calibration, and preservation of integrated fuel pump and controller assemblies, ensuring they meet stringent aerospace performance and safety standards before installation. Equipped with multi-stage filtration, temperature and pressure regulation, closed-loop speed control, and advanced safety interlocks, the system guarantees repeatable, traceable results. Its integrated preservation cycle protects components against corrosion and degradation during storage, making it an indispensable tool for aerospace maintenance, repair, and production environments.
No Image

Image Gallery

Technical Details

Parameter Specification
Working Fuel Aviation Turbine Fuel (ATF)
Preservation Fluid Mineral-based preservation oil
Fuel Tank Capacity 100 L (SS-300 series, 3 mm wall)
Preservation Oil Tank Capacity 100 L (SS-300 series, 3 mm wall)
High-Pressure Supply 22 ± 0.2 kgf/cm²
Low-Pressure Supply 11 ± 0.2 kgf/cm²
Drain Back Pressure 2 ± 0.2 kgf/cm²
Max Flow Rate 50 LPM
Filtration Stages 16 μm → 6 μm → 3 μm, β > 1000
Filter Bypass Pressure 3.5 bar
Heat Exchanger Plate type, 50 LPM, chilled water 6 kgf/cm²
Air Simulation Pressure Regulated, high and low circuits
Drive System Electric motor with 1:4.32 gearbox
Motor Speed Range 500–6200 RPM
Speed Accuracy ± 1 RPM (encoder feedback)
Electrical Supply 415 VAC ± 10%, 50 Hz, 3-phase
Control Interface PLC/HMI with manual override
Pulse Duty Generator Output 27 VDC, 40 Hz, adjustable duty
Oil Preservation Temperature 70 °C ± 2 °C
Safety Features Flameproof design, E-stop, overpressure relief, low-level shutdown
Piping Seamless SS-300, aerospace-grade fittings
Maintenance Access Front-access filters, valves, instrumentation
  • Pre-installation calibration of integrated fuel pump and controller units.
  • Verification of fuel system performance under simulated operational conditions.
  • Research and development testing for aerospace fuel control systems.
  • Quality assurance and certification of aircraft engine fuel accessories.
  • Failure diagnosis and troubleshooting of pump-controller assemblies.
  • Long-term preservation of fuel units before installation or shipment.
  • Training platform for maintenance and testing personnel.
  • Data collection for performance trend analysis and predictive maintenance.
  • Key Features

    • Simulates aircraft hydraulic, pneumatic, and electrical conditions for precise fuel pump testing.
    • High-precision regulation with constant pressure valves ±0.2 kgf/cm² for accurate calibration.
    • Multi-stage filtration to 3 µm with β>1000 ensures exceptional fuel cleanliness.
    • Variable Frequency Drive with encoder feedback, speed accuracy ±1 RPM up to 6200 RPM.
    • Preservation circuit circulates heated oil at 70 °C to prevent corrosion and extend lifespan.
    • Separate zones for control, test cell, and motor to enhance safety and reduce interference.
    • Pneumatic simulation network for bleed air and post-test drying functions.
    • PLC/HMI control with manual override and flameproof enclosures for safe operation.

    Media Gallery

    Video Gallery

    Download Gallery

    ×

    Enquire Now

    and we will get back to you.

    Details

    
    1. Functional Overview
    The Advanced Test & Calibration Bench for Integrated Fuel Pump and Controller in Aircraft Engines is a complex, multi-domain test facility designed to replicate the hydraulic, pneumatic, and electrical conditions experienced by the fuel pump and controller in an operational aircraft environment.
    The integrated fuel pump and controller is a critical engine accessory, responsible for delivering fuel at precisely regulated pressures and flow rates while simultaneously adjusting compressor inlet guide vane (IGV) positions in response to engine speed, inlet air temperature, compressor discharge pressure, and throttle commands.
    The bench enables preliminary regulation of these units before installation, allowing engineers to calibrate, verify, and document performance under controlled laboratory conditions. This ensures that each unit conforms to operational tolerances and is free from faults that could lead to in-service failures. In addition to live operational simulation, the bench incorporates a preservation system that circulates heated protective oil through the unit after testing, extending component life and preventing corrosion during storage or transportation.
    
    2. System Layout and Zoning
    The facility is divided into three physically separated zones to ensure operator safety, efficient workflow, and reduced interference between systems. The Control/Command Room houses the main operator panel, PLC/HMI interface, and all instrumentation readouts, keeping the operator isolated from noise, vibration, and potential hazards in the test area. The Test Cell contains the hydraulic, pneumatic, and preservation subsystems, arranged for maximum accessibility during setup and maintenance. The Motor Isolation Room contains the drive motor and gearbox assembly in an acoustically dampened enclosure, preventing high-frequency vibration and noise from coupling into the fuel system or the test environment.
    
    The zoning also supports a “safety-first” workflow, ensuring that any flammable or pressurised media remain within controlled areas, while electrical and control systems are housed in flameproof enclosures and kept at a safe distance from ATF handling equipment.
    
    3. Hydraulic (Fuel) Circuit
    The hydraulic system forms the backbone of the test bench, responsible for storing, filtering, conditioning, and delivering Aviation Turbine Fuel (ATF) to the integrated fuel pump and controller at precisely regulated pressures and temperatures. The system features a 100-litre stainless steel (SS-300 series) service tank with a 3 mm wall thickness to withstand both pressure surges and mechanical handling. The tank is fitted with a low-level sensor linked to an interlock, which automatically shuts down the pumps to prevent cavitation damage. A removable lid provides access for internal cleaning and inspection, ensuring long-term fuel cleanliness.
    
    Fuel delivery is achieved through two separate gear pumps. The high-pressure gear pump is rated at 50 LPM at 50 kgf/cm2, driven by a flameproof electric motor with foot-cum-flange mounting for secure alignment. This pump supplies the primary test lines, which are regulated by high-precision constant pressure valves set to 22 ± 0.2 kgf/cm2 and 11 ± 0.2 kgf/cm2. The second gear pump operates at 50 LPM at 10 kgf/cm2 and serves the circulation and filtration loop, allowing the fuel to be cleaned and conditioned independently of the main delivery system.
    
    Multi-stage filtration ensures removal of particulate contamination down to 3 microns absolute. The filtration stages consist of a 16 μm pre-filter, a 6 μm intermediate filter, and a final 3 μm filter, each with a beta ratio greater than 1000 to guarantee high retention efficiency. Each filter housing is equipped with a differential pressure gauge to indicate clogging and is protected by a bypass valve calibrated to 3.5 bar, ensuring uninterrupted flow in the event of blockage.
    
    Before entering the test unit, the fuel passes through an air separator, which removes entrained gas bubbles that could affect pressure regulation or cause cavitation damage to the unit. A dome-regulated drain valve maintains a constant back pressure of 2 ± 0.2 kgf/cm2 in the return line, accurately simulating the resistance of an engine fuel drain system. Fuel temperature is controlled by a plate-type heat exchanger capable of handling 50 LPM of ATF on the hot side, with chilled water at 6 kgf/cm2 on the cold side, ensuring a stable working fluid temperature within the 15–40 °C operational range.
    
    4. Pneumatic Simulation Network
    The pneumatic system provides both low-pressure and high-pressure air services to simulate engine bleed air functions and to dry the unit after fuel testing.
    
    The low-pressure circuit is designed for post-test drying. Compressed air enters through a moisture separator and is drained periodically via a manual valve to remove condensed water. The air then passes through a fine particulate filter before being routed to the unit through a flexible hose, ensuring that all residual fuel is removed from internal passages.
    
    The high-pressure circuit simulates bleed air supplied to temperature-sensing elements such as the TDK-Tp sensor within the unit. A high-precision regulator controls air pressure, followed by a fine filter to prevent particulate contamination. Downstream, a throttle valve allows the operator to vent air to the atmosphere in a controlled manner, simulating transient bleed events. Pressure is monitored both via an analog gauge for immediate operator reference and a high-accuracy transducer linked to the control panel for data logging.
    
    5. Electrical Drive and Control System
    The mechanical drive system consists of a high-speed electric motor coupled to a gearbox with a 1:4.32 gear ratio, enabling the unit to be driven at speeds up to 6200 RPM while maintaining high torque at low speeds. Speed control is achieved using a closed-loop vector-controlled Variable Frequency Drive (VFD) with encoder feedback, providing speed resolution to within ±1 RPM. The motor and gearbox are mounted on vibration isolators within the Motor Isolation Room, reducing transmission of mechanical noise to the test cell.
    
    The control panel in the Command Room is equipped with multiple Digital Read-Outs (DROs) displaying real-time data including supply and drain pressures, pneumatic pressures, ATF and preservation oil temperatures, electrical consumption (current and voltage), and both motor and gearbox output shaft speeds. Operators control the test sequence using rotary knobs for speed and setpoint adjustments, an Auto/Manual selector switch, and dedicated push-buttons for starting and stopping pumps, actuating valves, and initiating preservation cycles.
    
    The system includes a pulse duty cycle generator for actuating electro-mechanical valves on the unit under test. This generator outputs 27 VDC at 40 Hz with a default 50% duty cycle, adjustable via the front panel to simulate various ECU control signals. Safety is ensured through flameproof enclosures for all electrical devices, an emergency stop circuit, overpressure relief valves in both hydraulic and pneumatic lines, and a low-level fuel cut-off interlock.
    
    6. Preservation and Conditioning Circuit
    After functional testing is complete, the Preservation and Conditioning Circuit circulates heated protective oil through the internal fuel passages of the unit to prevent corrosion, oxidation, and residue build-up. The system includes a 100-litre stainless steel preservation oil tank with a low-level sensor, a dedicated flameproof gear pump, and multi-stage filtration identical to the main fuel system.
    
    The oil is heated to 70 °C ± 2 °C to ensure optimal coating and penetration into fine clearances. The bypass valve prevents overpressure in the event of downstream blockage, while a relief valve ensures operator safety by diverting excess oil back to the tank. This circuit can operate in either static soak mode, where the oil remains in the unit for a set period, or dynamic circulation mode, where continuous flow is maintained for extended preservation.
    
    7. Engineering Design Considerations
    The bench is constructed using seamless stainless steel piping (SS-300 series) with high-integrity fittings from approved aerospace-grade suppliers such as Swagelok or Parker, employing 37° or 74° flare seals. No PTFE tape is used on threaded joints to prevent particle shedding into the fluid systems. Pressure-sensing ports are located no more than 150 mm from the connection to the unit under test, minimising signal lag and ensuring accurate readings.
    
    All major components, including pumps, filters, and regulators, are mounted on rigid, vibration-dampened frames to maintain alignment and reduce fatigue on pipework. The layout is designed for ease of maintenance, with filter housings, pressure valves, and key instrumentation accessible from the front of the rig without the need to dismantle major assemblies.
    
    8. Technical Specifications Table
    
    Parameter Specification
    Working Fuel Aviation Turbine Fuel (ATF)
    Preservation Fluid Mineral-based preservation oil
    Fuel Tank Capacity 100 L (SS-300 series, 3 mm wall)
    Preservation Oil Tank Capacity 100 L (SS-300 series, 3 mm wall)
    High-Pressure Supply 22 ± 0.2 kgf/cm²
    Low-Pressure Supply 11 ± 0.2 kgf/cm²
    Drain Back Pressure 2 ± 0.2 kgf/cm²
    Max Flow Rate 50 LPM
    Filtration Stages 16 μm → 6 μm → 3 μm, β > 1000
    Filter Bypass Pressure 3.5 bar
    Heat Exchanger Plate type, 50 LPM, chilled water 6 kgf/cm²
    Air Simulation Pressure Regulated, high and low circuits
    Drive System Electric motor with 1:4.32 gearbox
    Motor Speed Range 500–6200 RPM
    Speed Accuracy ± 1 RPM (encoder feedback)
    Electrical Supply 415 VAC ± 10%, 50 Hz, 3-phase
    Control Interface PLC/HMI with manual override
    Pulse Duty Generator Output 27 VDC, 40 Hz, adjustable duty
    Oil Preservation Temperature 70 °C ± 2 °C
    Safety Features Flameproof design, E-stop, overpressure relief, low-level shutdown
    Piping Seamless SS-300, aerospace-grade fittings
    Maintenance Access Front-access filters, valves, instrumentation

    Trending Products

    Share This Page